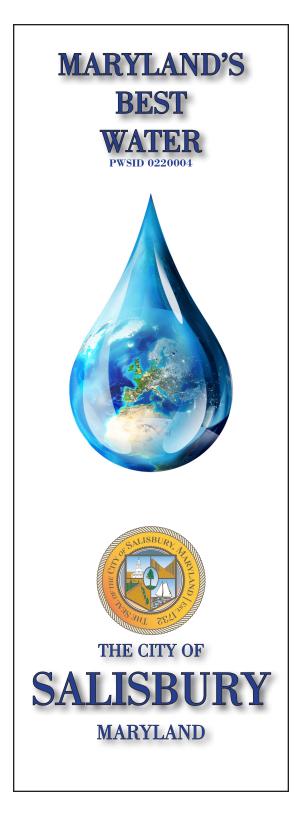
n behalf of Salisbury's Department of Water Works, I am pleased to present the annual Water Quality Report for the year 2019. In 2019, the City of Salisbury produced 2.1 billion gallons of clean, delicious water - a sample of which was chosen in a blind taste test as Maryland's best tasting tap water at the annual MD Rural Water Association's annual "Toasting the Tap" competition. That victory came on the heels of another impressive win, when Salisbury brought home 1st place Ground Water honors in the annual taste test competition hosted by the Chesapeake Section of the American Water Works Association, and the Chesapeake Water Environment Association. The results are as clear as our water: the stuff is as good as it gets. Under the leadership of Director Cori Cameron, Water Works staff have been busy maintaining and improving the City's existing water infrastructure, including the replacement of old cast iron water mains and service lines on North Division and Main Street, cleaning the raw water line from Paleo Well 2 to the Paleo Plant, and the rehabilitation of Well 17. Current projects under construction include the new Paleo Well 3 at the Paleo Water Plant, and rehabilitating existing wells at the Park and Paleo Water Treatment Plants. We are also beginning work on architectural improvements to the historic and treasured Park Plant Pumping Station building, with much-needed roof repairs and window improvements.

As we consider how we will return to normalcy in the wake of the COVID-19 crisis, Salisbury's water supply is as it will remain: safe, dependablydelivered, and—thanks to our position above the Paleochannel—in very good supply. Please contact me with any questions you may have about Salisbury's award-winning water.

Yours in Service,


Jacob R. Day Mayor of Salisbury, MD

THE CITY OF SALISBURY WATER TREATMENT PLANT

SALISBURY, MD 21801

2322 SCENIC DRIVE

e are pleased to present you with our **2019** Quality Water Report. This report is designed to educate and inform you about the quality water and services we deliver to you every day. Our constant goal is to provide the consumer with a consistent and reliable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. The following report is provided in compliance with federal regulations and will be provided annually. This report shows the quality of our finished drinking water and what that quality means.

The source of Salisbury's water supply is a shallow unconfined Coastal Plain aquifer, known as the Quaternary System. The city currently uses 11 wells from two Water Plants to obtain our drinking water. The two northernmost wells draw water from the deeper and highly productive paleochannel sediments within the Quaternary System.

An aquifer is a sort of underground reservoir, which is tapped by drilling wells and pumping the water to the surface for distribution. The earth between surface sources of contamination and these underground reservoirs help to purify the water before it actually reaches the aquifer, making it easier for us to treat before we pump it into the water distribution system. The water treatment process includes aeration, pre-chlorination, filtration, iron removal, disinfection, corrosion control and fluoride addition. The water storage towers are routinely removed from service to be cleaned and inspected. Our hydrant-flushing program operates on a routine basis to assist in providing a clear and clean product to our consumers.

Reliable drinking water is collected, treated, tested and delivered to your home and business 24 hours a day, seven days a week. The operations staff consists of one Water Treatment Class T4 Maryland certified Superintendent, four Water Treatment Class T4 Maryland certified Operators, four Water Treatment Class T4 Maryland temporary Operators, and one Water Distribution Operator. The operations staff are members and attend meetings and training seminars of the American Water Works Association (Chesapeake Section), Water and Wastewater Operators Association and the Maryland Rural Water Association. Together they have attended more than 100 hours of Continuing Education training in the past year in an effort to keep up-to-date with the latest in water treatment techniques, safety and homeland security. Their goal is to provide the consumer with the best water possible.

The Maryland Department of the Environment's Water Supply Program has conducted a Source Water Assessment for the City of Salisbury. The susceptibility analysis for Salisbury's water supply is based on a review of the water quality data, potential sources of contamination, aquifer characteristics, and well integrity. It was determined that all of Salisbury's wells are susceptible to contamination by volatile organic compounds, and synthetic organic compounds. In addition, Salisbury's Park well field is susceptible to contamination by nitrate. The water supply is not susceptible to other regulated inorganic compounds, and radiological or microbiological contaminants.

Everyone needs to help prevent contaminants from entering source waters in the first place. Protection of the watershed goes hand-in-hand with ensuring the appropriate treatment is provided by your utility. For more information, the Wicomico County Public Library has a copy of Salisbury's Source Water Assessment.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man-made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It's important to remember that the presence of these constituents does not necessarily pose a health risk. Maximum Contaminant Levels (MCL's) are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

The City of Salisbury Water Plants routinely monitor for constituents in your drinking water according to Federal and State laws. The following table, entitled "Annual Contaminants Monitoring Report", shows the results of our monitoring for the period of January 1 to December 31, 2019. In this table, you will find many terms and abbreviations you may not find familiar. To help you better understand these terms we've provided the following definitions:

Avg - Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MCLs are enforceable standards.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals.

Maximum Residual Disinfectant Level (MRDL) – the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Na – Not applicable

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present or not detectable with best available technology.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Parts per trillion (ppt) or Nanograms per liter (ng/l) – is equal to one drop in one trillion gallons of water.

Treatment Technique (TT) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Unregulated Contaminants – (UNREG CONT.) are those for which EPA has not established drinking water standards. The purpose of monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

ANNUAL CONTAMINANTS MONITORING REPORT CITY OF SALISBURY POTABLE WATER SYSTEM

		L	IT OF SALL	ISBURI PU	PIABLE WA	IER SIS			
				Water Qu	ality Data				
DETECTED REGULATED C		ITS							
SUBSTANCE	UNITS	LEVEL FOUND		DATE	MCL	MCLG		VIOLATION	LIKELY SOURCE OF CONTAMINATION
SYNTHETIC ORGANIC CO	NTAMINANTS	5							
Dibromo-chloropropane (DBCP)	ppt	ND		2018	200 ppt	Zero		NO	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards.
INORGANIC CONTAMINAN	TS								
Barium	ppm	0.171 ppm		2019	2 ppm	2 ppm		NO	Discharge of drilling wastes; metal refineries; erosion of natural deposits.
Fluoride	ppm	0.46 ppm		2019	4 ppm	4 ppm		NO	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer & aluminum factories.
Nitrate (as Nitrogen)	ppm	6 ppm (Annual Range 3.9-6.1)		2019	10 ppm	10 ppm		NO	Runoff from fertilizer use; leaching from septic tanks sewage, erosion of natural deposits.
DETECTED UNREGULATE	CONTAMIN	ANTS							
HAA5	ppb	Range 0.75-1.10 ppb Highest detect 1.10 ppb		3/19/2019 3/19/2019	UNREG CONT.	UNREG CONT.		NO	By-product of drinking water disinfection.
HAA6Br	ppb	Range 0.69-0.95 ppb Highest detect 0.95 ppb		3/19/2019 3/19/2019	UNREG CONT.	UNREG CONT.		NO	By-product of drinking water disinfection.
HAA9	ppb	Range 1.11 – 1.58 ppb Highest detect 1.58 ppb		3/19/2019 3/19/2019	UNREG CONT.	UNREG CONT.		NO	By-product of drinking water disinfection.
Manganese	ppb	15.4 ppb		3/19/2019	UNREG CONT.	UNREG CONT.		NO	Manganese is a naturally- occurring metal that is essential to the proper functioning of the body found both in ground and surface water sources.
	UNITS	DISTRIBUTION SYSTEM							
SUBSTANCE		LEVEL FOUND	DATE	Locational Annual Running Average (LRAA)	MCL	MCLG VIOLATION		LIKELY SOURCE OF CONTAMINATION	
INORGANIC CONTAMINAN	TS							Correction of her	
Cu 90 Copper 90 th %	ppm	.13 ppm	09/05/2018	N/A	TT Action Level=1.3 ppm	1.3 ppm	NO	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.	
PB90 Lead 90 th %	ppm	ND	8/11/2018	N/A	TT Action Level=0.015 ppm	Zero	NO	Corrosion of household plumbing systems, erosion of natural deposits.	
DISINFECTANTS AND DISI			2010	10 ppm			NO		
Chlorine TTHM (Total	ppm ppb	0.9 – 1.0 2019 Range 0-6.7 Quarterly/2019		1.0 ppm 9.0 ppb	MRDL = 4.0 80 ppb	MRDLG = 4 NO N/A NO		Water additive used to control microbes. By-product of drinking water disinfection.	
Trihalomethanes) HAA5 (Haloacetic Acids)	ppb	Range 0-1.3	Quarterly/2019	2.0 ppb	60 ppb	N/A	NO		inking water disinfection.

Our system monitoring detected Total Trihalomethanes (TTHM), considerably below the MCL. It is important to understand that the detection of this substance in the drinking water **does not** constitute a known health threat because it was found only at a level **less than** the MCL and **below** the level, that EPA currently feels may constitute a health threat. Some people who drink water containing trihalomethanes in excess of the MCL over many years experience problems with their liver, kidneys, or central nervous systems, and may have increased risk of getting cancer

Our system had no problems with Total Coliform Bacteria this year. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, bacteria may be present. The Total Coliform Rule requires water systems to meet a stricter limit for coliform bacteria. Our city lab runs 31 total coliform samples per month. We have not experienced any problems in 2019 and we do not anticipate any problems with coliform bacteria. available from the EPA Safe Drinking Water Hotline at 1-800-426-4791 or at http://www.epa.gov/safewater/lead.

Specific to lead, the EPA issued the Lead and Copper Rule, which requires corrosion control treatment at the plant. Houses built before 1986, have an increased risk of lead in the plumbing. You may want to test your water if your home has lead pipes (lead is a dull gray metal that is soft enough to be easily scratched with a house key) or your non plastic plumbing was installed before 1986. Please call our office if you would like to participate in our tri-annual lead and copper sampling program. Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

The City of Salisbury reduced the Fluoride level in the finished

Nitrates were detected in our groundwater **below the MCL**. Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask advice from your health care provider.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Salisbury is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is The table shows that all of the contaminants, which were monitored in accordance with State and Federal laws, were of levels less than the MCL and below the level, that EPA currently feels may constitute a health threat. EPA believes the water is safe at these levels. Over 100 additional contaminants were analyzed in our drinking water and all were Non-Detected Contaminants.

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER Availability of Monitoring Data for Unregulated Contaminants for the City of Salisbury

Our water system has sampled for a series of unregulated contaminants. Unregulated contaminants are those that don't yet have a drinking water standard set by EPA. The purpose of monitoring for these contaminants is to help EPA decide whether the contaminants should have a standard. As our customers, you have a right to know that these data are available. The unregulated contaminants detected in our water are shown on the Contaminants Monitoring Chart. A complete list of all unregulated contaminants that were tested for are listed on the EPA website EPA.gov/drink/contaminants. If you are interested in examining the City of Salisbury results, please contact the City of Salisbury Water Plant. drinking water from a 1.0 mg/l to 0.7 mg/l in January 2012. The decrease was recommended by the Environmental Protection Agency, Department of Health and Human Services and the Maryland Department of the Environment. The recommended level of fluoride in drinking water can be set at the lowest end of the current optimal range to prevent tooth decay (0.7 mg/l), and EPA is initiating review of the maximum amount of fluoride allowed in drinking water (4.0 mg/l). These actions will maximize the health benefits of water fluoridation to Americans by continuing to prevent tooth decay while reducing the possibility of children receiving too much fluoride.

You may see our staff at local events around town promoting water conservation. Take time to visit our booth and ask questions. Make conserving water a daily part of your life. And remember when you save water, you save energy and money! If you would like to receive a water conservation packet with water saving tips in the home, garden, or for children, please contact the water plant at 410-548-3199 and one can be mailed to your home.

We are committed to continuing to provide an excellent service that our customers can take for granted. Help us to provide your family with clean, quality water by participating in official City of Salisbury water sampling programs. If you have any questions about this report or concerning your drinking water, please contact **Ronald Clapper at the City of Salisbury Water Plant at 410-548-3199.**